LLM 适配器:使用多个结构化输出后端
Ragas 通过适配器模式支持多个结构化输出后端。本指南解释了如何为不同的 LLM 提供商使用不同的适配器。
概述
Ragas 使用适配器来处理来自不同 LLM 提供商的结构化输出
- Instructor 适配器:适用于 OpenAI, Anthropic, Azure, Groq, Mistral, Cohere 等
- LiteLLM 适配器:适用于所有 100 多种 LiteLLM 支持的提供商 (Gemini, Ollama, vLLM, Bedrock 等)
该框架会自动为您的提供商选择最佳适配器,但您也可以显式选择。
快速开始
自动选择适配器(推荐)
让 Ragas 自动检测最佳适配器
from ragas.llms import llm_factory
from openai import OpenAI
# For OpenAI - automatically uses Instructor adapter
client = OpenAI(api_key="...")
llm = llm_factory("gpt-4o-mini", client=client)
from ragas.llms import llm_factory
import google.generativeai as genai
# For Gemini - automatically uses LiteLLM adapter
genai.configure(api_key="...")
client = genai.GenerativeModel("gemini-2.0-flash")
llm = llm_factory("gemini-2.0-flash", provider="google", client=client)
显式选择适配器
如果您需要更多控制,请选择特定的适配器
from ragas.llms import llm_factory
# Force using Instructor adapter
llm = llm_factory("gpt-4o", client=client, adapter="instructor")
# Force using LiteLLM adapter
llm = llm_factory("gemini-2.0-flash", client=client, adapter="litellm")
自动检测逻辑
当 `adapter="auto"` (默认) 时, Ragas 使用以下逻辑
- 检查客户端类型:如果客户端来自
litellm模块 → 使用 LiteLLM 适配器 - 检查提供商:如果提供商是
google或gemini→ 使用 LiteLLM 适配器 - 默认:在所有其他情况下使用 Instructor 适配器
from ragas.llms.adapters import auto_detect_adapter
# See which adapter will be used
adapter_name = auto_detect_adapter(client, "google")
print(adapter_name) # Output: "litellm"
adapter_name = auto_detect_adapter(client, "openai")
print(adapter_name) # Output: "instructor"
特定提供商示例
OpenAI
from openai import OpenAI
from ragas.llms import llm_factory
client = OpenAI(api_key="your-key")
llm = llm_factory("gpt-4o", client=client)
# Uses Instructor adapter automatically
Anthropic Claude
from anthropic import Anthropic
from ragas.llms import llm_factory
client = Anthropic(api_key="your-key")
llm = llm_factory("claude-3-sonnet", provider="anthropic", client=client)
# Uses Instructor adapter automatically
Google Gemini (使用 google-generativeai - 推荐)
import google.generativeai as genai
from ragas.llms import llm_factory
genai.configure(api_key="your-key")
client = genai.GenerativeModel("gemini-2.0-flash")
llm = llm_factory("gemini-2.0-flash", provider="google", client=client)
# Uses LiteLLM adapter automatically for google provider
Google Gemini (使用 LiteLLM 代理 - 高级)
from openai import OpenAI
from ragas.llms import llm_factory
# Requires running: litellm --model gemini-2.0-flash
client = OpenAI(
api_key="anything",
base_url="http://0.0.0.0:4000" # LiteLLM proxy endpoint
)
llm = llm_factory("gemini-2.0-flash", client=client, adapter="litellm")
# Uses LiteLLM adapter explicitly
本地模型 (Ollama)
from openai import OpenAI
from ragas.llms import llm_factory
# Ollama exposes OpenAI-compatible API
client = OpenAI(
api_key="ollama",
base_url="https://:11434/v1"
)
llm = llm_factory("mistral", provider="openai", client=client)
# Uses Instructor adapter
AWS Bedrock
from openai import OpenAI
from ragas.llms import llm_factory
# Use LiteLLM proxy for Bedrock
# Note: Set up LiteLLM with Bedrock credentials first
client = OpenAI(
api_key="", # Bedrock uses IAM auth
base_url="http://0.0.0.0:4000" # LiteLLM proxy endpoint
)
llm = llm_factory("claude-3-sonnet", client=client, adapter="litellm")
Groq
from groq import Groq
from ragas.llms import llm_factory
client = Groq(api_key="your-key")
llm = llm_factory("mixtral-8x7b", provider="groq", client=client)
# Uses Instructor adapter automatically
Mistral
from mistralai import Mistral
from ragas.llms import llm_factory
client = Mistral(api_key="your-key")
llm = llm_factory("mistral-large", provider="mistral", client=client)
# Uses Instructor adapter automatically
Cohere
from cohere import Cohere
from ragas.llms import llm_factory
client = Cohere(api_key="your-key")
llm = llm_factory("command-r-plus", provider="cohere", client=client)
# Uses Instructor adapter automatically
适配器选择指南
根据您的需求选择适配器
在以下情况下使用 Instructor 适配器
- 使用 OpenAI, Anthropic, Azure, Groq, Mistral 或 Cohere
- 提供商由 Instructor 原生支持
- 您想要最稳定、经过充分测试的选项
- 提供商不需要特殊处理
在以下情况下使用 LiteLLM 适配器
- 使用 Google Gemini
- 使用本地模型 (Ollama, vLLM 等)
- 使用拥有 100 多种选项的提供商 (Bedrock 等)
- 您需要最大的提供商兼容性
- 自动检测为您的提供商选择了它
直接使用适配器
获取可用适配器
from ragas.llms.adapters import ADAPTERS
print(ADAPTERS)
# Output: {
# "instructor": InstructorAdapter(),
# "litellm": LiteLLMAdapter()
# }
获取特定适配器
from ragas.llms.adapters import get_adapter
instructor = get_adapter("instructor")
litellm = get_adapter("litellm")
# Create LLM using adapter directly
llm = instructor.create_llm(client, "gpt-4o", "openai")
高级用法
模型参数
所有适配器都支持相同的模型参数
异步支持
两个适配器都支持异步操作
from openai import AsyncOpenAI
from ragas.llms import llm_factory
async_client = AsyncOpenAI(api_key="...")
llm = llm_factory("gpt-4o", client=async_client)
# Async generation
response = await llm.agenerate(prompt, ResponseModel)
使用 LiteLLM 的自定义提供商
LiteLLM 支持许多 Instructor 未覆盖的提供商。请使用 LiteLLM 代理方法
from openai import OpenAI
from ragas.llms import llm_factory
# Set up LiteLLM proxy first:
# litellm --model grok-1 (for xAI)
# litellm --model deepseek-chat (for DeepSeek)
# etc.
client = OpenAI(
api_key="your-provider-api-key",
base_url="http://0.0.0.0:4000" # LiteLLM proxy endpoint
)
# xAI Grok
llm = llm_factory("grok-1", client=client, adapter="litellm")
# DeepSeek
llm = llm_factory("deepseek-chat", client=client, adapter="litellm")
# Together AI
llm = llm_factory("mistral-7b", client=client, adapter="litellm")
完整评估示例
from datasets import Dataset
from ragas import evaluate
from ragas.llms import llm_factory
from ragas.metrics import (
ContextPrecision,
ContextRecall,
Faithfulness,
AnswerCorrectness,
)
# Initialize LLM with your provider
import google.generativeai as genai
genai.configure(api_key="...")
client = genai.GenerativeModel("gemini-2.0-flash")
llm = llm_factory("gemini-2.0-flash", provider="google", client=client)
# Create evaluation dataset
data = {
"question": ["What is the capital of France?"],
"answer": ["Paris"],
"contexts": [["France is in Europe. Paris is its capital."]],
"ground_truth": ["Paris"]
}
dataset = Dataset.from_dict(data)
# Define metrics
metrics = [
ContextPrecision(llm=llm),
ContextRecall(llm=llm),
Faithfulness(llm=llm),
AnswerCorrectness(llm=llm),
]
# Evaluate
results = evaluate(dataset, metrics=metrics)
print(results)
问题排查
“未知适配器: xyz”
请确保您使用的是有效的适配器名称
# Valid: "instructor" or "litellm"
llm = llm_factory("model", client=client, adapter="instructor")
# Invalid: "dspy" (not yet implemented)
# llm = llm_factory("model", client=client, adapter="dspy") # Error!
“无法初始化提供商客户端”
请确保:1. 您的客户端已正确初始化 2. 您的 API 密钥有效 3. 适配器支持该提供商
# Check if adapter can handle your provider
from ragas.llms.adapters import auto_detect_adapter
adapter = auto_detect_adapter(client, "my-provider")
print(f"Will use: {adapter}")
适配器不匹配
自动检测能处理大多数情况,但显式选择可能会有所帮助
# If auto-detection picks the wrong adapter:
llm = llm_factory(
"model",
provider="provider-name",
client=client,
adapter="litellm" # Explicit override
)
迁移指南
从纯文本到结构化输出
如果您正在从仅使用纯文本的 LLM 升级
# Before (deprecated)
# from ragas.llms import LangchainLLMWrapper
# llm = LangchainLLMWrapper(langchain_llm)
# After (new way)
from ragas.llms import llm_factory
llm = llm_factory("gpt-4o", client=client)
切换提供商
要从 OpenAI 切换到 Gemini
# Before: OpenAI
from openai import OpenAI
client = OpenAI(api_key="...")
llm = llm_factory("gpt-4o", client=client)
# After: Gemini (similar code pattern!)
import google.generativeai as genai
genai.configure(api_key="...")
client = genai.GenerativeModel("gemini-2.0-flash")
llm = llm_factory("gemini-2.0-flash", provider="google", client=client)
# Adapter automatically switches to LiteLLM for google provider
另请参阅
- Gemini 集成指南 - 详细的 Gemini 设置
- LLM 工厂参考 - 完整的 API 参考
- 指标文档 - 使用 LLM 的指标