非英语测试集生成
从非英语语料库生成合成测试
在本 Notebook 中,您将学习如何将合成测试数据生成适应到非英语语料库环境。在本教程中,我将从西班牙语维基百科文章中生成西班牙语查询。
下载并加载语料库
Cloning into 'Sample_non_english_corpus'...
remote: Enumerating objects: 12, done.[K
remote: Counting objects: 100% (8/8), done.[K
remote: Compressing objects: 100% (8/8), done.[K
remote: Total 12 (delta 0), reused 0 (delta 0), pack-reused 4 (from 1)[K
Unpacking objects: 100% (12/12), 11.43 KiB | 780.00 KiB/s, done.
from langchain_community.document_loaders import DirectoryLoader, TextLoader
path = "Sample_non_english_corpus/"
loader = DirectoryLoader(path, glob="**/*.txt")
docs = loader.load()
/opt/homebrew/Caskroom/miniforge/base/envs/ragas/lib/python3.9/site-packages/requests/__init__.py:102: RequestsDependencyWarning: urllib3 (1.26.20) or chardet (5.2.0)/charset_normalizer (None) doesn't match a supported version!
warnings.warn("urllib3 ({}) or chardet ({})/charset_normalizer ({}) doesn't match a supported "
6
初始化所需模型
from ragas.llms import LangchainLLMWrapper
from ragas.embeddings import LangchainEmbeddingsWrapper
from langchain_openai import ChatOpenAI
from langchain_openai import OpenAIEmbeddings
generator_llm = LangchainLLMWrapper(ChatOpenAI(model="gpt-4o-mini"))
generator_embeddings = LangchainEmbeddingsWrapper(OpenAIEmbeddings())
/opt/homebrew/Caskroom/miniforge/base/envs/ragas/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
from .autonotebook import tqdm as notebook_tqdm
设置 Persona 和转换
您可以使用此 notebook 自动创建人物模型。为简单起见,我使用了一个预定义的人物模型、两个基本转换和简单的特定查询分布。
from ragas.testset.persona import Persona
personas = [
Persona(
name="curious student",
role_description="A student who is curious about the world and wants to learn more about different cultures and languages",
),
]
from ragas.testset.transforms.extractors.llm_based import NERExtractor
from ragas.testset.transforms.splitters import HeadlineSplitter
transforms = [HeadlineSplitter(), NERExtractor()]
初始化测试生成器
from ragas.testset import TestsetGenerator
generator = TestsetGenerator(
llm=generator_llm, embedding_model=generator_embeddings, persona_list=personas
)
加载并调整查询
在这里,我们加载所需的查询类型并使它们适应目标语言。
from ragas.testset.synthesizers.single_hop.specific import (
SingleHopSpecificQuerySynthesizer,
)
distribution = [
(SingleHopSpecificQuerySynthesizer(llm=generator_llm), 1.0),
]
for query, _ in distribution:
prompts = await query.adapt_prompts("spanish", llm=generator_llm)
query.set_prompts(**prompts)
生成
dataset = generator.generate_with_langchain_docs(
docs[:],
testset_size=5,
transforms=transforms,
query_distribution=distribution,
)
Applying HeadlineSplitter: 0%| | 0/6 [00:00<?, ?it/s]unable to apply transformation: 'headlines' property not found in this node
unable to apply transformation: 'headlines' property not found in this node
unable to apply transformation: 'headlines' property not found in this node
unable to apply transformation: 'headlines' property not found in this node
unable to apply transformation: 'headlines' property not found in this node
unable to apply transformation: 'headlines' property not found in this node
Generating Scenarios: 100%|██████████| 1/1 [00:07<00:00, 7.75s/it]
Generating Samples: 100%|██████████| 5/5 [00:03<00:00, 1.65it/s]
Query: Quelles sont les caractéristiques du Bronx en tant que borough de New York?
Reference: Le Bronx est l'un des cinq arrondissements de New York, qui est la plus grande ville des États-Unis. Bien que le contexte ne fournisse pas de détails spécifiques sur le Bronx, il mentionne que New York est une ville cosmopolite avec de nombreux quartiers ethniques, ce qui pourrait inclure des caractéristiques culturelles variées présentes dans le Bronx.
就这样。您可以根据您的要求自定义测试生成过程。